2'-Hydroxylation of nicotine by cytochrome P450 2A6 and human liver microsomes: formation of a lung carcinogen precursor.

نویسندگان

  • S S Hecht
  • J B Hochalter
  • P W Villalta
  • S E Murphy
چکیده

Smokers or people undergoing nicotine replacement therapy excrete approximately 10% of the nicotine dose as 4-oxo-4-(3-pyridyl)butanoic acid (keto acid) and 4-hydroxy-4-(3-pyridyl)butanoic acid (hydroxy acid). Previously, these acids were thought to arise by secondary metabolism of the major nicotine metabolite cotinine, but our data did not support this mechanism. Therefore, we hypothesized that nicotine is metabolized by 2'-hydroxylation, which would ultimately yield keto acid and hydroxy acid as urinary metabolites. This pathway had not been established previously in mammalian systems and is potentially significant because the product of nicotine 2'-hydroxylation, 4-(methylamino)-1-(3-pyridyl)-1-butanone (aminoketone), can be converted to the potent tobacco-specific lung carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Incubation of nicotine with cytochrome P450 2A6 and cofactors did indeed produce aminoketone, which was identified as its N-benzoyl derivative by GC-MS. The rate was 11% of that of cotinine production. Incubation of human liver microsomes with nicotine gave keto acid by using aminoketone as an intermediate; keto acid was not formed from cotinine. In 10 human liver samples, rates of formation of keto acid were 5.7% of those of cotinine and production of these metabolites correlated. These results provide definitive evidence for mammalian 2'-hydroxylation of nicotine and elucidate a pathway by which endogenous formation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone could occur in humans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence for cytochrome P450 2A6 and 3A4 as major catalysts for N'-nitrosonornicotine alpha-hydroxylation by human liver microsomes.

The tobacco specific carcinogen N'-nitrosonornicotine (NNN), is believed to be a causative agent for esophageal cancer in smokers. NNN requires metabolic activation to exert its carcinogenic potential. Metabolism occurs through cytochrome P450 (P450) catalyzed 2'- and 5'-hydroxylation, which generates unstable metabolites that decompose to 4-hydroxy-1-(3-pyridyl)-1-butanone ('keto alcohol') and...

متن کامل

Activation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in human lung microsomes by cytochromes P450, lipoxygenase, and hydroperoxides.

4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a potent tobacco-specific carcinogen, has been demonstrated to induce lung tumors in animals and is suspected to be a human carcinogen. Cytochromes P450 are the major enzymes responsible for the activation of NNK in microsomes from the lung and liver of rat and mouse, as well as human liver. The present study investigated the enzymes respons...

متن کامل

Roles of cytochromes P450 1A2, 2A6, and 2C8 in 5-fluorouracil formation from tegafur, an anticancer prodrug, in human liver microsomes.

Tegafur, an anticancer prodrug, is bioactivated to 5-fluorouracil (5-FU) mainly by cytochrome P450 (P450) enzymes. The conversion from tegafur into 5-FU catalyzed by human liver microsomal P450 enzymes was investigated. In fourteen cDNA-expressed human P450 enzymes having measurable activities, CYP1A2, CYP2A6, CYP2E1, and CYP3A5 were highly active in catalyzing 5-FU formation at a tegafur conce...

متن کامل

Pathways of carbamazepine bioactivation in vitro I. Characterization of human cytochromes P450 responsible for the formation of 2- and 3-hydroxylated metabolites.

In vitro studies were conducted to identify the cytochromes P450 (P450s) involved in the formation of 2- and 3-hydroxycarbamazepine, metabolites that may serve as precursors in the formation of protein-reactive metabolites. Human liver microsomes (HLMs) converted carbamazepine (30-300 microM) to 3-hydroxycarbamazepine at rates >25 times those of 2-hydroxycarbamazepine. Both the 2- and 3-hydroxy...

متن کامل

Cytochrome P4502B6 and 2C9 do not metabolize midazolam: kinetic analysis and inhibition study with monoclonal antibodies.

We determined the contribution of cytochrome P450 (CYP) isoforms to the metabolism of midazolam by kinetic analysis of human liver microsomes and CYP isoforms and by examining the effect of chemical inhibitors and monoclonal antibodies against CYP isoforms in vitro. Midazolam was metabolized to 1'-hydroxymidazolam (1'-OH MDZ) by human liver microsomes with a Michaelis-Menten constant (Km) of 4....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 97 23  شماره 

صفحات  -

تاریخ انتشار 2000